Andreas Floer

FONT SIZE:
fontsize_dec
fontsize_inc
Maj 14, 2016 Kemuel Buhr A 0 0

Andreas Floer var en tysk matematiker, der gjorde skelsættende bidrag til områderne geometri, topologi og matematisk fysik, især opfindelsen af ​​Floer homologi.

Livet

Han var en undergraduate studerende ved Ruhr-Universität Bochum og modtog en Diplom i matematik i 1982. Han gik til University of California, Berkeley og påtog Ph. D. arbejde på monopoler på 3-mangfoldigheder, under tilsyn af Clifford Taubes ; men han ikke fuldføre den, når afbrudt af hans obligatorisk alternativ tjeneste i Tyskland. Han fik sin Ph. D. i Bochum i 1984, under tilsyn af Eduard Zehnder.

Floer første pivotale bidrag var en opløsning af et særligt tilfælde af Arnold formodning om faste punkter i et symplectomorphism. På grund af hans arbejde på Arnolds formodninger og hans udvikling af InstantOn homologi, opnåede han stor anerkendelse og blev inviteret som en plenum højttaler til den internationale kongres af Matematikere afholdt i Kyoto i august 1990. Han modtog en Sloan Fellowship i 1989.

I 1988 blev han adjunkt ved University of California, Berkeley, og blev forfremmet til fulde professor i matematik i 1990. Fra 1990 var han professor i matematik ved Ruhr-Universität Bochum, indtil hans selvmord i 1991.

Citater

"Andreas Floer liv var tragisk afbrudt, men hans matematiske visioner og slående bidrag har givet kraftfulde metoder som bliver anvendt på problemer, som syntes at være umedgørlig kun et par år siden."

Simon Donaldson skrev: "Begrebet Floer homologi er en af ​​de mest slående udvikling i differential geometri i løbet af de sidste 20 år .... Idéerne har ført til store fremskridt i områder med lav-dimensionelle topologi og symplektisk geometri og er intimt relateret til udviklingen i kvantefeltteori "og" den fulde rigdom af Floer teori er først lige begyndt at blive udforsket. "

"Siden introduktionen af ​​Andreas Floer i slutningen af ​​nitten firserne, har Floer teori haft en enorm indflydelse på mange grene af matematik, herunder geometri, topologi og dynamiske systemer. Udviklingen af ​​nye Floer teoretiske værktøjer fortsætter i en bemærkelsesværdig tempo og indgår i mange af de seneste gennembrud i disse forskellige områder. "

Udvalgte publikationer

  • Floer, Andreas. En InstantOn-invariant for 3-mangfoldigheder. Comm. Math. Phys. 118, nr. 2, 215-240. Projekt Euclid
  • Floer, Andreas. Morse teori for Lagrange vejkryds. J. Differential Geom. 28, nr. 3, 513-547.
  • Floer, Andreas. Cuplength anslår på Lagrange kryds. Comm. Pure Appl. Math. 42, nr. 4, 335-356.

Posthume udgivelser

  • Hofer, Helmut. Sammenhængende orientering for periodiske orbit problemer i symplektisk geometri Math. Zeit. 212, 13-38, 1993.
  • Hofer, Helmut. Symplektiske homologi I: Åbne sæt i C ^ n Math. Zeit. 215, 37-88, 1994.
  • Hofer, Helmut. Anvendelser af symplektisk homologi I Math. Zeit. 217, 577-606, 1994.
  • Hofer, Helmut. Symplektiske homologi II: en bygge- Math. Zeit. 218, 103-122, 1995.
  • Hofer, Helmut. Transversalitetsbetingelsen resultater i elliptiske Morse teori af handlingen funktionelle Duke Mathematical Journal, Vol. 80 No. 1, 251-292, 1995. Download fra H. Hofer hjemmeside på NYU
  • Hofer, Helmut. Anvendelser af symplektisk homologi II Math. Zeit. 223, 27-45, 1996.
  0   0
Næste artikel Kamera-interface

Kommentarer - 0

Ingen kommentar

Tilføj en kommentar

smile smile smile smile smile smile smile smile
smile smile smile smile smile smile smile smile
smile smile smile smile smile smile smile smile
smile smile smile smile
Tegn tilbage: 3000
captcha